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Abstract—The nonlinear dynamics of vehicles on a virtual ring
is investigated. A vehicle chain is considered where a connected
automated vehicle (CAV) driving at the head of the chain receives
the state of a connected human-driven vehicle (CHV) at the tail.
The controller of the CAV is constructed in a way that the CHV
is projected in front of it; this closes a virtual ring. We construct
the corresponding mathematical model and analyze the effect
of nonlinearities with numerical continuation. Then, we present
real car experiments with two CHVs and one CAV. Both the
theoretical results and the experiments show bistable behavior
for certain control parameters. The results provide an essential
support for parameter tuning during the control design of CAVs.

Index Terms—Connected automated vehicles, traffic flow, ve-
hicles on a virtual ring.

I. INTRODUCTION

Advanced driver assistance systems have been improving
the safety and driving comfort of individual vehicles. However,
improving the overall behavior of traffic to prevent the forma-
tion of phantom traffic jams [1], [2] remains a challenge on
heavily used highways. Vehicle-to-everything (V2X) commu-
nication [3] can help to tackle this problem. V2X connectivity
enables connected automated vehicles (CAVs) to receive and
respond to information about other vehicles in traffic. This led
to the concept of cooperative adaptive cruise control [4]–[6]
where multiple CAVs are connected to each other, and to the
concepts of connected cruise control [7]–[9] and connected
traffic control [10], [11] where a CAV receives information
from connected human-driven vehicles (CHVs) ahead/behind.

A relatively large number of vehicles are required to form
congestion in open vehicle chains. While this is the case in
real-world scenarios, it makes it challenging to experimentally
study traffic jams with just a few vehicles. The number
of vehicles can be reduced by adding a periodic boundary
condition and analyzing the dynamics of vehicles on a ring
[12]–[14].

The experimental realization of the ring configuration faces
significant challenges. The ring needs to be large enough so

Bence Szaksz is with the Department of Applied Mechanics, and with the
MTA-BME Lendulet “Momentum” Global Dynamics Research Group, Bu-
dapest University of Technology and Economics, Budapest, H-1111, Hungary.
szaksz@mm.bme.hu.

Tamas G. Molnar is with the Department of Mechanical
Engineering, Wichita State University, Wichita, KS 67260, USA.
tamas.molnar@wichita.edu.

Sergei S. Avedisov is with the Department of Mechanical En-
gineering, University of Michigan, Ann Arbor, MI 48109, USA.
avediska@umich.edu.
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Fig. 1. The concept of virtual ring for three vehicles. The head connected
automated vehicle (CAV) responds to the connected human-driven vehicles
(CHVs) behind while it pretends to follow the tail CHV on the virtual ring.

that the lateral dynamics can be neglected and the drivers can
focus on car-following. For example, in the experiments in
[12], [15], rings with radii of about 40 meters were used with
22 vehicles. Still, the speed had to be kept low to limit the
lateral acceleration: a maximum lateral acceleration of about
3.5m/s2, corresponding to the comfort level of human drivers,
requires the speed to be below 12m/s. This speed range is
much lower than the one experienced on highways.

To overcome this challenge, we put forward the concept of
virtual ring [3], [10], where the vehicles drive on a straight
road such that a CAV travels at the head of a vehicle chain
and a CHV travels at the tail. Using V2X communication,
the CAV responds to the CHV as if the CHV was driving
ahead of the CAV. By “projecting the CHV ahead”, the CAV
closes the virtual ring. This enables us to carry out experiments
at real highway speeds, without subjecting the drivers to
lateral acceleration. Such experiments are utilized to reveal
nonlinear phenomena, referred to as bistability, behind the
formation of phantom jams on highways. As [10] was limited
to simulation-based analysis, the present study provides the
first real-world validation of bistability occurring in virtual
rings. The experiments also serve as benchmark for evaluating
different connectivity-based control strategies in mixed traffic
scenarios where CAVs interact with human-driven vehicles.

The paper is organized as follows. Section II discusses the
concept of the virtual ring and introduces the control strategies
of human-driven and connected automated vehicles. Then, the
nonlinear analysis of the system is carried out in Sec. III.
In Sec. IV, the theoretical results are validated by real-life
experiments with three vehicles, including a CAV. Finally, we
add some concluding remarks in Sec. V.



II. MODELING

Figure 1 depicts the virtual ring configuration for three
vehicles. The blue CAV drives at the head of a vehicle chain
while it pretends to follow the red CHV at the tail. Such
configuration is enabled by V2X communication which allows
the CAV to respond to multiple vehicles “ahead”. In the
example shown, the red vehicle is “immediately ahead” of the
blue vehicle while the black vehicle is “two vehicles ahead”.
This setup enables vehicles to drive at realistic speed and
facilitates the study of their behavior at nonlinear level.

The realization of the virtual ring requires the definition
of the headway of the CAV. Consider that N vehicles are
placed on a (virtual) ring of length L + Nl where L is the
net ring length and l is the length of the vehicles (considered
to be the same for all vehicles for simplicity). We number the
vehicles from the tail CHV to the head CAV as i = 1, . . . , N ,
see Fig. 1(a) for N = 3. The headway and the velocity of the
i-th vehicle are denoted by hi and vi, respectively. The sum
of the headways gives the net ring length which allows us to
express the CAV’s headway as

N∑
i=1

hi = L ⇒ hN = L−
N−1∑
i=1

hi . (1)

The equation of motion takes the form

ḣi(t) = vi+1(t)− vi(t) , for i ∈ {1, . . . , N − 1} , (2)
v̇i(t) = sat(ui(t− τi)) , for i ∈ {1, . . . , N} , (3)

where τi is the delay in the control of the i-th vehicle, while

sat(u) =


umin, if u < umin ,

u, if umin ≤ u ≤ umax ,

umax, if u > umax .

(4)

Note that the CAV’s headway is not presented in (2) since it
is obtained from the geometric constraint (1). In the following
numerical analysis, the minimum and maximum accelerations
are umin = −7m/s2, and umax = 3m/s2, respectively.

The human driving behavior is approximated by the optimal
velocity model [16], [17] as

ui = αi

(
Vi(hi)− vi

)
+ βi

(
Wi(vi+1)− vi

)
, (5)

with the parameters αi and βi, the nonlinear range policy
function

Vi(h) =


0, if h < hst,i ,

vmax,i

(
1−

(
hgo,i−h

hgo,i−hst,i

)2
)
, if hst,i ≤ h ≤ hgo,i ,

vmax,i, if h > hgo,i ,

(6)

and the speed policy

Wi(v) =

{
v , if v < vmax,i ,

vmax,i , if v ≥ vmax,i .
(7)

The range policy functions Vi imply that the drivers aim to
stop if their headway is smaller than a prescribed value, i.e.,

h ≤ hst , while they aim to keep a maximum velocity vmax

if the vehicle ahead is far enough, i.e., h ≥ hgo. In between,
we consider a smooth second-order function.

The controller of the CAV is also designed based on the
optimal velocity model with the “trick” that the CHV #1 is
projected in front of the CAV in a distance of hN ; cf. (1). The
corresponding controller is given in the form

uN = αN

(
VN (hN )− vN

)
+ βN

(
WN (v1)− vN

)
, (8)

with gains αN , βN and the piecewise linear range policy

VN (h) =


0, if h < hst,N ,

vmax,N
h−hst,N

hgo,N−hst,N
, if hst,N ≤ h ≤ hgo,N ,

vmax,N , if h > hgo,N ,

(9)

while the speed policy WN takes the same form as in (7).
Model (1)-(9) captures the following behaviors. It has an

equilibrium, where all vehicles travel with the same constant
velocity and keep constant headways that are determined by
the range policies. If the equilibrium is stable, the effects of
perturbations (like a braking of an individual driver) vanish
over time and smooth traffic is observed. If the equilibrium is
unstable, the velocities start to oscillate, which corresponds to
repeated slowdowns in traffic jams. We use DDE-BIFTOOL
[18] to numerically analyze the (local and global) stability
of the equilibrium and the occurrence of periodic oscillations
(limit cycles) for the nonlinear dynamics (1)-(9). We remark
that nonlinearities and time delays make it particularly chal-
lenging to identify and control dynamics [19]–[21].

III. NUMERICAL ANALYSIS

Consider that the CAV travels in front of two human-driven
vehicles (HVs), the second of which is a CHV. The net length
of the virtual ring is L = 75m. For the sake of simplicity,
assume that the human drivers are identical and their behavior
is described by the parameters hst,h = 5m, hgo,h = 35m,
vmax,h = 22m/s, αh = 0.25 s−1, and τh = 1 s. The pa-
rameters of the CAV are hst,N = 5m, vmax,N = 30m/s,
αN = 0.4 s−1, βN = 0.5 s−1, and τN = 0.6 s.

Figure 2(a) presents a stability chart that shows the stability
of the equilibrium for various values of the CAV’s free flow
headway hgo,N and the HVs’ control gain βh. The equilibrium
is stable in the union of the shaded domains. Along the
stability boundaries, shown by black lines, Hopf bifurcation
occurs and the system loses its stability with oscillations.
Analyzing the nonlinear dynamics reveals two qualitatively
different behaviors in the shaded domain. In the gray region,
the equilibrium is globally stable, and speed fluctuations decay
for arbitrary perturbations, which leads to smooth traffic. In the
brick-colored bistable domain, stable limit-cycles coexist with
the stable equilibrium. At these parameter combinations, the
system converges to the equilibrium for small perturbations,
and large enough perturbations result in oscillatory motions.
That is, a large enough braking of a driver may trigger
oscillations in vehicle speeds, similar to those in traffic jams.

Panels (b), (c), (e) and (f) show bifurcation diagrams for
fixed values of the free flow headway hgo,N obtained with



Fig. 2. Nonlinear analysis of the dynamics (1)-(9) on a virtual ring with N = 3 vehicles. Panel (a) presents a stability chart, while panels (b), (c), (e) and
(f) are bifurcation diagrams for various values of the free flow headway hgo,N . Panel (h) depicts the time period of oscillation of the limit cycles existing
for hgo,N = 30m. Finally, panels (d) and (h) visualize the stable limit cycles for hgo,N = 30m and βh = 0.12 s−1 (see point P in (a), (c) and (g)).

DDE-BIFTOOL [18]. The diagrams show branches of unstable
equilibria (UE) and stable equilibria (SE). These are separated
by Hopf bifurcation points, which give rise to branches of
unstable limit cycles (ULC) and stable limit cycles (SLC). For
hgo,N = 20m and hgo,N = 30m, the branch emerging from
the left Hopf point turns right, then a fold bifurcation occurs,
and the branch turns back to the left. The range of βh values
between the Hopf and fold points, where SE and SLC coexist,
is called a bistable domain; see panel (c). The bistable domain
shrinks and disappears as the parameter hgo,N increases.

Panel (g) presents the time period Tp of oscillation for the
limit cycles obtained for hgo,N = 30m. It is about 12 s at the
fold point of the left branch and it increases with the increase
of the limit cycle amplitude. Meanwhile, the time period of
oscillation of the right limit cycle is about 6 s.

Panels (d) and (h) show the time evolution of the velocities
and headways for the stable limit cycle at hgo,N = 30m and
βh = 0.12 s−1 (see point P in panels (a), (c) and (g)). The CAV
performs large (saturated) accelerations and decelerations,
while its headway gets relatively small. This helps the human
drivers, since they can keep longer headways along the ring.

We repeated the analysis for a virtual ring with N = 6
vehicles in Fig. 3, using the same parameters as before except
for αh = 0.15 s−1 and τh = 0.9 s. Figure 3(a) shows that, in
this case, almost the entire linearly stable region is bistable.

Figure 3(b) shows that, for hgo,N = 20m, the two branches
of limit cycles emerging from the left and right Hopf points are
still separated, and the fold points are located such that there
always exists a SLC above the SE. As hgo,N is increased, the
two branches meet and create a gate-like branch of ULC above
the equilibrium, and an isolated branch of large-amplitude
SLC; see panel (c). As panel (e) depicts, a further increase
of hgo,N yields that the branches meet and separate again
to left and right branches. In this configuration, a bistable
and a globally stable interval exist, which is consistent with
the stability chart in panel (a). Panel (f) illustrates that, for

hgo,N = 52m, again, a gate-like unstable branch is above the
SE, while a large amplitude isolated stable branch also exists.

The corresponding time period of oscillations in panel (g)
is larger than in the N = 3 case, which can be explained by
the fact that more vehicles are involved in the oscillation.

Finally, panels (d) and (h) present the velocities and the
headways as a function of the normalized time for the SLC at
hgo,N = 30m and βh = 0.35 s−1 (see point P in panels (a),
(c) and (g)). Again, the CAV performs large accelerations and
decelerations, which allows keeping relatively small headway.

IV. VIRTUAL RING EXPERIMENTS

We also conducted experiments to demonstrate the appli-
cability of the theoretical results. The experiments utilized
two CHVs and one CAV, all equipped with a V2X kit, which
includes a V2X on-board unit (OBU), an antenna for GPS and
V2X communication, and a laptop. The OBU is connected to
the laptop via Ethernet and powered by a 12V supply through
the vehicle’s cigar lighter. Using this setup, the vehicles were
able to share motion information with each other. The shared
data included GPS position, GPS-based speed, and heading
angle, all transmitted at a 10 Hz update rate. The CAV was a
commercial vehicle that was modified to enable control over
its longitudinal and lateral motions.

In practice, the positions si of the vehicles are not de-
termined individually but rather the distances si − sj are
calculated using the Haversine formula [22] that provides the
great circle distance between two points of GPS coordinates.
This is used to obtain the distance between the rear bumpers
of the head CAV and the tail CHV:

sN − s1 =

N−1∑
i=1

hi + (N − 1)l , (10)

cf. Fig. 1(b) for N = 3. Substituting this into (1) results in

hN = L+ (N − 1)l − (sN − s1) . (11)



Fig. 3. Nonlinear analysis of the dynamics (1)-(9) on a virtual ring with N = 6 vehicles. Panel (a) presents a stability chart, while panels (b), (c), (e) and
(f) are bifurcation diagrams for various values of the free flow headway hgo,N . Panel (h) depicts the time period of oscillation of the limit cycles existing
for hgo,N = 30m. Finally, panels (d) and (h) visualize the stable limit cycles for hgo,N = 30m and βh = 0.35 s−1 (see point P in (a), (c) and (g)).

With the shifted position sN+1 = s1 + L+Nl, one obtains

hN = sN+1 − sN − l . (12)

Note that this can be generalized for vehicles of different
lengths with sN+1 = s1 + L+

∑N
i=1 li.

For the experimental results presented below, we utilize
N = 3 vehicles of length l = 5m on a virtual ring of length
L+ 3l = 90m. Figs. 4-7 depict the measured speed, acceler-
ation and headway of all three vehicles in the top, middle and
bottom panels, respectively. Observe that the speed reaches
25m/s, which is a realistic speed for highway driving. If one
wanted to carry out these experiments on a physical ring road,
lateral accelerations would have reached 43.5m/s2, that is,
around 4.5 g. This is more than ten times larger than what is
considered to be comfortable in normal driving, and only race
car drivers can venture into this territory. This demonstrates
the necessity of the virtual ring setup.

In Fig. 4, the blue CAV responds to the red CHV “ahead”.
The speed limit is set to vmax,N = 30m/s, the standstill
headway is hst,N = 5m, and the free flow headway is
hgo,N = 55m. The remaining parameters of the CAV are
αN = 0.4 s−1 and βN = 0.5 s−1. After some initial transients,
the system approaches an equilibrium where the vehicles
maintain the same constant speed and constant (but not uni-
form) headways. Around t = 50 s, the red CHV imposes a
perturbation by tapping the brake. This perturbation propagates
along the virtual ring as the blue CAV and then the black HV
respond to it, and thus, it reaches the red CHV again. The
consecutive braking events become weaker and weaker, and
after these transient oscillations decay, the system returns to
the equilibrium. At around t = 70 s, the CHV applies another
perturbation which also leads to transient oscillations. In this
case, it takes longer time for the transients to decay but
eventually the system returns to the equilibrium. Based on
these experiments, one may declare that the equilibrium is
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Fig. 4. Virtual ring experiment for virtual ring length L+ 3l = 90m where
the CAV responds to one CHV “ahead” while utilizing the controller (7,8,9)
with free flow headway hgo = 55m. The red CHV imposes perturbations
around t = 50 s and t = 70 s and in both cases the system returns to the
equilibrium after some transient oscillations.

globally stable for the chosen controller, which we also found
to be the case for other values of the net ring length L.

Note that the equilibrium is nonuniform (i.e., the equilib-
rium headways differ from each other) since the vehicles are
not identical. In particular, in Fig. 4, we have h∗

1 ≈ h∗
2 < h∗

3,
that is, the CAV maintains a larger headway compared to those
of the human drivers.

In Fig. 5, the same control strategy is used as in Fig. 4, i.e.,
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Fig. 5. Virtual ring experiment for virtual ring length L+ 3l = 90m where
the CAV responds to one CHV “ahead” while utilizing the controller (7,8,9)
with free flow headway hgo = 42.5m. The red CHV imposes perturbations
around t = 10 s and t = 35 s. In the former case the system returns to the
equilibrium while in the latter case limit cycle oscillations develop.

the blue CAV only responds to the red CHV “ahead”, but the
gradient of the CAV’s range policy is increased by reducing
the free flow headway to hgo,N = 42.5m. This results in a
smaller equilibrium headway for the CAV, and in turn, larger
headways for the human-driven vehicles. Initially, the system
stays close to the equilibrium until about t = 10 s when the
red CHV imposes a perturbation. The corresponding transients
decay and the system returns to the equilibrium. This means
that the equilibrium is locally stable. However, at t = 35 s the
red CHV imposes another, slightly larger perturbation, and
the related transients grow into sustained oscillations. Simi-
lar to the theoretical results, the experiments reveal bistable
behavior: the system either converges to the locally stable
equilibrium or to the locally stable limit cycle depending on
the applied perturbations. Although, the oscillation amplitude
of the numerical analysis and the experiments are not the same,
the corresponding time period of oscillations are in the same
range as they are Tp,n ≈ 12 s and Tp,e ≈ 8 s in the numerical
analysis and in the experiments, respectively.

In Fig. 6, the gradient of the range policy is increased
further by decreasing the free flow headway to hgo,N = 35m,
while the CAV still utilizes the same control strategy as in
Figs. 4 and 5. This further decreases the equilibrium headway
of the CAV, and in turn, further increases the equilibrium
headways of the human-driven vehicles. Again, perturbations,
like those applied by the red CHV at t = 10 s and t = 65 s,
lead to sustained oscillations, while the system can still return
to the equilibrium from time to time, indicating bistability. The
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Fig. 6. Virtual ring experiment for virtual ring length L+ 3l = 90m where
the CAV responds to one CHV “ahead” while utilizing the controller (7,8,9)
with free flow headway hgo = 35m. The red CHV imposes perturbations
around t = 10 s and t = 65 s and in both cases limit cycle oscillations
develop.

fact that even smaller perturbations can trigger sustained oscil-
lations suggests that the region of attraction of the equilibrium
is smaller than it was in the hgo,N = 42.5m case.

Finally, in order to eliminate bistability, we change the
control strategy as demonstrated in Fig. 7. Here, the CAV
responds to the red CHV “ahead” as well as to the black CHV
“two vehicles ahead” using the controller:

uN = αN

(
VN (hN )− vN

)
+ βN,1

(
WN (v1)− vN

)
+βN,2

(
WN (v2)− vN

)
,

(13)

cf. (8). The free flow headway is set to hgo,N = 35m,
while the gains are αN = 0.4 s−1, βN,1 = 0.2 s−1 and
βN,2 = 0.3 s−1. In this case, the equilibrium becomes globally
stable as shown by the decay of the oscillations triggered by
the red CHV at t = 35 s and t = 75 s. This demonstrates the
benefits of V2X connectivity in stabilizing a system that is
otherwise prone to limit cycle oscillations. Compared to Fig. 4,
where the equilibrium was also globally stable, here the CAV
is able to maintain smaller headways.

V. CONCLUSION

We analyzed the nonlinear dynamics of vehicles on a virtual
ring created by vehicles traveling on a straight road such
that the last CHV is “projected” ahead of the first CAV.
This configuration allows one to carry out experiments with
realistic speeds without the presence of large lateral (centrifu-
gal) forces. In addition, it is also safer than a conventional
ring configuration, because the CAV cannot run into the
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Fig. 7. Virtual ring experiment for virtual ring length L+ 3l = 90m
where the CAV responds to two CHVs “ahead” while utilizing the controller
(7,9,13) with free flow headway hgo = 35m. The gain parameters are set
to αN = 0.4 s−1, βN,1 = 0.2 s−1, βN,2 = 0.3 s−1. The red CHV imposes
perturbations around t = 35 s and t = 75 s and in both cases the system
returns to the equilibrium after some transient oscillations.

vehicle “ahead” as it is not physically there. Via numerical
bifurcation analysis, we showed that the system is bistable
under certain parameter combinations even for 3 vehicles.
Additionally, increasing the number of vehicles increases the
bistable domain. We observed the same qualitative behavior by
conducting experiments on a virtual ring with 3 commercial
vehicles, one of which was turned into a CAV. The results
confirmed the presence of bistability. Finally, when the CAV
responded to the vehicle “two vehicles ahead”; this led to the
most stable behavior with beneficially small headways. The
results support the control design of CAVs, and provide new
ways to mitigate phantom traffic jams.

In the future, we plan to carry out an extensive measure-
ment campaign to discover the effects of various parameter
combinations and large vehicle fleets, and to examine the
dynamics in diverse environments. Besides, we plan to develop
theoretical models of human driving behavior based on the
measurement results. For this, there are already promising
methods in the literature utilizing neural networks [23] or
Bayesian inference algorithms [24].
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